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RESUMO 

 
Compreender a diversidade viral existente é uma parte importante da virologia 

e conservação do hospedeiro. Com novas ferramentas de metagenômica, como 

o sequenciamento de alto rendimento (HTS), é possível sequenciar genomas 

virais conhecidas e desconhecidas, contribuindo assim para o enriquecimento 

do banco de dados viral. Além disso, compreender a diversidade viral (viroma) 

acerca de sistemas e indivíduos, impulsiona estudos que buscam vírus 

potencialmente zoonóticos. Em alguns grupos de animais, como os répteis, os 

estudos de viroma são escassos. Neste trabalho, analisamos o viroma de duas 

espécies de jararaca usando o método de HTS. Bothrops jararaca, distribuída 

amplamente na Mata Atlântica (ocupando ambientes mais intrincados e 

diversificados), exibe variação ontogenética em sua dieta. Por outro lado, a 

Bothrops sazimai, uma espécie insular restrita à Ilha dos Franceses (ambiente 

menos complexo), localizada no município de Itapemirim, no estado do Espírito 

Santo, não apresenta indícios de variação ontogenética em sua alimentação. 

Com isso, amostras de swab cloacal foram utilizadas para avaliar como a faixa 

etária e a espécie levam a mudanças na composição viral do trato 

gastrointestinal a nível de família. Ao final da análise de HTS foram obtidas 20 

famílias virais.  Majoritariamente,  o viroma foi composto por familias de 

bacteriófagos e algumas famílias que infectam vertebrados. Por fim, não foi 

observada relação entre a riqueza viral e as espécies de serpente. A riqueza de 

famílias virais variou negativamente com o aumento do tamanho corporal dos 

indivíduos em ambas as espécies. Esse é o primeiro estudo que investiga o 

viroma gastrointestinal de B. jararaca e B. sazimai.  

 

Palavras-chave:   Viroma, Bothrops jararaca, Bothrops sazimai, metagenômica, 

tamanho corporal
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ABSTRACT 

Understanding existing viral diversity is an important part of virology and host 

conservation. With new metagenomic tools, such as high-throughput 

sequencing (HTS), it is possible to sequence both known and unknown viral 

genomes, thereby contributing to the enrichment of viral databases. Moreover, 

understanding viral diversity (virome) in systems and individuals drives studies 

that seek potentially zoonotic viruses. In some animal groups, such as reptiles, 

virome studies are scarce. In this study, we analyzed the virome of two 

Bothrops species using HTS. Bothrops jararaca, which is widely distributed 

throughout the Atlantic Forest (occupying more intricate and diverse 

environments), exhibits ontogenetic variation in its diet. On the other hand, 

Bothrops sazimai, an island species restricted to Ilha dos Franceses (a less 

complex environment), located in the municipality of Itapemirim, in the state of 

Espírito Santo, shows no evidence of ontogenetic variation in its feeding 

habits. Cloacal swab samples were used to assess how age class and species 

influence changes in the viral composition of the gastrointestinal tract at the 

family level. At the end of the HTS analysis, 20 viral families were identified. 

The virome was mostly composed of bacteriophage families, along with some 

families that infect vertebrates. Finally, no relationship was observed between 

viral richness and snake species. Viral family richness varied negatively with 

increasing individual body size in both species. This is the first study to 

investigate the gastrointestinal virome of B. jararaca and B. sazimai. 

 

Keywords: Virome, Bothrops jararaca, Bothrops sazimai, metagenomic, body 

size.



 

  

1. INTRODUÇÃO 

1.1. Diversidade Viral e Metagenômica 

Os vírus são parasitas intracelulares obrigatórios que dependem 

inteiramente de uma célula hospedeira para iniciar seu ciclo replicativo e, 

sucessivamente, sua infecção. Este grupo possui grande influência em uma 

gama de ambientes, podendo influenciar inclusive em processos ecossistêmicos 

de larga escala (Grozinger & Flenniken, 2019). Até o momento, os vírus são 

classificados em 314 famílias, totalizando 14.690 espécies (ICTV, 2023).  

Vírus são as entidades biológicas mais diversas, possuindo uma estrutura 

simples composta por ácidos nucleicos envoltos por um capsídeo composto por 

proteínas (Chaitanya, 2019; Li et al., 2019). Os vírus são classificados desde 

1971 pela classificação de Baltimore, uma classificação didática que leva em 

consideração as características do ácido nucleico (DNA e/ou RNA), estrutura do 

material genético (fita simples ou dupla) e possibilidade de transcrição reversa 

(Baltimore, 1971). Em 2023, os vírus passaram a ser classificados 

taxonomicamente com a nomenclatura binominal (gênero + epíteto específico) 

pelo Comitê Internacional de Taxonomia de Vírus (ICTV, do inglês International 

Committee on Taxonomy of Viruses), assim como os demais grupos 

taxonômicos (Zerbini et al., 2023), sendo avaliados de acordo com a relação 

filogenética entre eles (Simmonds et al., 2023). 

Apenas uma pequena fração da diversidade viral é conhecida, devido às 

dificuldades metodológicas históricas no estudo do grupo (Oliveira, 2019; Reyes 

et al., 2012). Inicialmente, o cultivo em laboratório desempenhou um papel 

fundamental para o estudo básico dos vírus, sendo o principal método de 

pesquisa nesta área por dois séculos. Entretanto, os cientistas foram 

confrontados com a existência de organismos que provocavam doenças em 

seres humanos e que se mostraram um grande desafio para serem cultivados 

em laboratório (Handelsman, 2004; Simon & Daniel, 2011; Oldstone, 2014). A 

introdução de ferramentas como a microscopia de epifluorescência e a 

microscopia eletrônica de transmissão representou um marco nos estudos da 

virologia, pois viabilizou a observação dos patógenos, o que permitiu a análise 

detalhada da morfologia e da abundância dos vírus em diferentes ecossistemas 

e organismos (Weinbauer e Suttle, 1997; Vale et al., 2010). A partir de 1964, a 
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metodologia do sequenciamento surgiu, impulsionando Frederick Sanger em 

1977 a descrever o genoma de um bacteriófago, vírus que infecta bactéria 

(Barba et al., 2014). A técnica utilizada por Sanger para o sequenciamento deste 

vírus foi nomeada como “Sequenciamento de Sanger” e consiste na parada da 

síntese pela DNA polimerase devido a adição de um didesoxinucleotídeo 

trifosfato (ou seja, sem a 3’-OH em um dos carbonos da ribose). Além disso, os 

fragmentos de DNA eram marcados radioativamente para que após o 

processamento pudessem ser separados por eletroforese e a sequência 

analisada (Men et al., 2008; Sanger et al., 1977). 

Por mais de 30 anos, o método de Sanger foi a técnica predominante 

para sequenciamento de genomas. No entanto, esse método tinha suas 

limitações, sendo restrito a regiões de interesse menores, o que impossibilitava 

o sequenciamento simultâneo de regiões mais extensas ou múltiplas regiões 

dentro do mesmo genoma (Kumar et al., 2019). Há cerca de 20 anos, o 

desenvolvimento do “sequenciamento de alto rendimento” (HTS, do inglês High-

Throughput Sequencing), uma ferramenta da metagenômica que consiste na 

obtenção de um alto número de sequências produzidas simultaneamente, tem 

levado à caracterização viral de forma mais ampla e rápida (Tucker et al., 2009; 

Liu et al., 2012), aumentando o conhecimento da diversidade viral através da 

análise de metagenômica (David et al., 2021; Silva, 2021). A metagenômica é 

uma área da genômica que consiste em caracterizar o material genético 

presente em comunidades microbianas complexas de amostras biológicas, 

enquanto a genômica convencional caracteriza o genoma de um único 

organismo. A metagenômica, acoplada às ferramentas de bioinformática, 

produzem dados que são analisados a partir das sequências obtidas pelo 

sequenciamento (Riesenfeld et al., 2004; Thurber et al., 2009). Essa ferramenta 

permite que diversos conceitos sejam explorados como a diversidade, dinâmica 

e especificidade dessa microbiota e suas aplicações no ramo da biotecnologia. 

 A metagenômica combinada com a virologia, equivale à metagenômica 

viral, o estudo do viroma. O viroma corresponde ao estudo de, virtualmente, todo 

o material genético viral presente em uma determinada amostra de um indivíduo 

ou população, e propõe enriquecer o banco de dados a respeito da diversidade 

viral e contribuir para o desenvolvimento de pesquisas relacionadas à evolução 
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de vírus e à transmissão viral entre as diversas espécies de organismos (Roux 

et al., 2019; Santiago-Rodriguez & Hollister, 2019; Virgin, 2014). Porém, ainda 

é bastante custoso o acesso aos equipamentos requeridos e há a necessidade 

de conhecimento aprofundado acerca das técnicas e programas envolvidos no 

processo, o que ainda dificulta o pleno desenvolvimento da metagenômica viral 

(Bhukya & Nawadkar, 2018; Rose et al., 2016). 

A metagenômica viral sequencia genomas de vírus, sendo eles 

conhecidos ou não em um hospedeiro. Essa metodologia permite identificar não 

apenas vírus patogênicos, mas também vírus que até o momento não 

apresentam patogenecidade associada ao organismo estudado. Além disso, a 

metagenômica possui grande importância na saúde pública, pois é capaz de 

caracterizar vírus potencialmente zoonóticos, mesmo em indivíduos 

assintómáticos (Haagmans et al., 2009; Jones et al., 2008; Smits & Osterhaus, 

2013). Em termos de conservação, a aplicação da metagenômica é essencial, 

já que as espécies silvestres estão suscetíveis às infecções virais que, se não 

controladas, podem causar declínios populacionais (Bacandritsos et al., 2010; 

Pruvot et al., 2020; Teacher et al., 2010). Isso é crítico para espécies endêmicas 

e pequenas populações de espécies, que correm risco de extinção (Earl & Gray, 

2014; Gilbert et al., 2014; Zhang et al., 2018).  

A análise do viroma de um organismo depende primeiramente do objetivo 

da investigação para que seja possível definir a técnica de amostragem, como 

qual material deve ser coletado, o foco da amostragem e o processamento da 

amostra. Sangue, órgãos, fezes e swabs (orais/cloacais/anais) são alguns tipos 

de amostras utilizadas na metagenômica viral (Guo et al., 2023; Shan et al., 

2022; Sun et al., 2023). Para o estudo do viroma gastrointestinal, por exemplo, 

é possível utilizar amostras de fezes e swab cloacal/anal, duas formas de 

amostragem eficazes e não invasivas de investigar os patógenos associados ao 

trato digestivo e à dieta do organismo. Adicionalmente, vírus associados às 

presas já foram encontrados em seus respectivos predadores, tornando 

possível a investigação da composição da dieta dos hospedeiros analisados (Li 

et al., 2010; Shi et al., 2021a; Wille et al., 2020). A microbiota gastrointestinal é 

formada por uma gama de bactérias e vírus que tendem a permanecer nos 

órgãos, em simbiose com o organismo (Santiago-Rodriguez & Hollister, 2019; 
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Stumpf et al., 2016; Tiamani et al., 2022). No entanto, diversas enterites podem 

ocorrer em caso de infecção por patógenos, causando uma disbiose 

(desequilíbrio da microbiota gastroinstestinal) (Cristofori et al., 2021). A análise 

do viroma é uma boa opção para identificar o patógeno, acelerando o tratamento 

e auxiliando na prevenção de possíveis doenças ou surtos epidemiológicos. 

1.2 Diversidade Viral Associada aos Répteis 

Os estudos avaliando viromas têm focado principalmente em vírus 

associados aos mamíferos devido à proximidade filogenética desses animais 

com os humanos, o que favorece o transbordamento zoonótico (D’arc et al., 

2015; D’arc et al., 2020; Schrago & Barzilai, 2021). Contudo, o fenômeno 

também pode ser observado entre humanos e outros grupos faunísticos (Harvey 

& Holmes, 2022). Nos últimos tempos, o número de pesquisas sobre vírus 

associados a répteis têm aumentado, principalmente devido aos indícios de que 

esse grupo pode ser hospedeiro de vírus capazes de infectar humanos, como o 

vírus da Chikungunya (Alphavirus) (Bosco-Lauth et al., 2018; Marschang, 2011). 

Diversos grupos de vírus foram descritos como infectantes de uma ampla 

variedade de répteis, tais como poxvírus na tartaruga-verde Chelonia mydas 

(Sarker et al., 2021), Ranavírus no lagarto Sceloporus undulatus (Goodman et 

al., 2018) e herpesvírus na serpente Opheodrys vernalis (Lovstad et al., 2019). 

O estudo realizado em C. mydas observou um animal doente, com diversas 

lesões e mortalidade associadas à infecção viral. Já a análise que detectou 

ranavírus em S. undulatus, amostrou indivíduos aparentemente saudáveis, mas 

que testaram positivo para um vírus do gênero Ranavírus, vírus patogênicos que 

infectam peixes, répteis e anfíbios. No caso de O. vernalis, o estudo relacionou 

a presença de carcinomas orais vistos nos indivíduos com infecção por 

herpesvírus. 

O entendimento acerca da diversidade e da dinâmica viral está 

intimamente relacionado com a compreensão a respeito da transmissão viral 

entre os hospedeiros. O termo “spillover” (transbordamento) caracteriza a 

transmissão viral entre hospedeiros de espécies diferentes. A transmissão pode 

ocorrer através da ingestão direta ou indireta do organismo infectado, por 

contato com mucosa e sangue infectados, aerossóis e superfícies infectadas  

(Alexander et al., 2018; Becker et al., 2019; Lo et al., 2019). O transbordamento 
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é facilitado entre espécies que detém alguma proximidade filogenética entre si 

(Park, 2019). No entanto, fatores como condições ambientais e adaptações do 

vírus ao novo hospedeiro permitem que o transbordamento também ocorra em 

espécies filogeneticamente distantes (Parrish et al., 2008; Walker et al., 2018). 

Outro fator que influencia na capacidade de transmissão de um vírus a um novo 

hospedeiro é a alta taxa de mutação, que, na maioria das vezes, confere ao 

vírus altas taxas evolutivas quando alinhadas a outros fatores determinantes 

dentro do hospedeiro. As mutações desenvolvidas podem facilitar a capacidade 

de um vírus de evadir o sistema imunológico, desenvolver resistência a antivirais 

ou adaptação à uma nova espécie hospedeira (Stern & Andino, 2016; Peck & 

Lauring, 2018). 

No transbordamento zoonótico, um vírus comumente encontrado em um 

hospedeiro animal passa a infectar e causar doenças em um novo hospedeiro 

animal, incluindo o humano (Santana, 2020). Aproximadamente 75% das 

doenças infecciosas emergentes em humanos são de origem zoonótica 

(Slingenbergh et al., 2004), podendo causar impactos sociais e econômicos, 

como: a COVID-19, causada por um coronavírus (Mishra et al., 2021); a dengue, 

causada por um flavivírus (Choumet & Desprès, 2015); e a encefalite equina 

oriental, causada por um arbovírus (Corrin et al., 2021). 

Além de avaliar possíveis zoonoses, é importante considerar o risco de 

declínio populacional e lesões substanciais causadas por vírus. O declínio 

populacional é mais preocupante em espécies endêmicas, como observado no 

cágado Myuchelys georgesi, uma espécie endêmica de uma região da Austrália, 

em que um nidovírus causou uma redução significativa em sua população 

(Zhang et al., 2018). O estudo analisou tecidos dos indivíduos coletados, que 

foram submetidos à histopatologia, isolamento viral e HTS. Os resultados 

revelaram lesões nos tecidos analisados e infecção viral por nidovírus. Infecções 

virais podem ainda ocasionar lesões importantes em répteis como necrose 

fibrinóide (necrose do tecido por acúmulo de fibrina) (Dervas et al., 2020), lesões 

no trato respiratório (Stenglein et al., 2014), tumores (Eleni et al., 2017) e 

desencadear doenças subsequentes, como pneumonia (Dervas et al., 2017) e 

câncer (Orós et al., 2004). 
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Além dos impactos evidentes mencionados, as viremias desempenham 

um papel significativo como causadoras de mortes por patógenos em criadouros 

de répteis e zoológicos (Argenta et al., 2020; Hoon-Hanks et al., 2020; Sharma 

et al., 2014). Isso impacta fortemente no comércio de pets “não-convencionais”, 

um ramo que vem crescendo nos últimos tempos, uma vez que pode levar à 

mortalidade de animais cativos e à transmissão zoonótica de patógenos aos 

tutores/cuidadores e vice-versa. Nos zoológicos, por exemplo, a infecção pode 

se alastrar para outros setores resultando em uma epidemia local (De Voe et al., 

2004; Jacobson et al., 1992; Miller et al., 2003; Varga-Kugler et al., 2023).  

Desde a década de 60, as serpentes têm recebido atenção em estudos 

virais, com um crescimento contínuo no número dessas pesquisas (Ahne et al., 

1987; Gebhardt & Hill, 1960; Hepojoki et al., 2015; Johnsrude et al., 1997; Khalfi 

et al., 2024; Lunger et al., 1974; Wellehan Jr. et al., 2008). Entre os répteis, o 

grupo das serpentes (Squamata; Ophidia) apresenta uma diversidade 

particularmente alta com 4.108 espécies descritas distribuídas por 30 famílias 

(Uetz et al., 2024). Embora nos últimos anos o número de estudos avaliando a 

diversidade viral associado ao grupo tenha crescido, ainda existe uma lacuna a 

ser preenchida na literatura a respeito de análises metagenômicas com este 

grupo. A família Viperidae, a terceira mais diversa com 396 espécies descritas 

(Uetz et al., 2024), é um exemplo do reflexo da escassez de estudos 

relacionados à metagenômica viral nos ofídios. Até o momento apenas um 

estudo (Liu et al., 2023) aborda a temática com uma espécie de viperídeo. No 

entanto, grande parte dos estudos encontrados utilizam métodos convencionais 

(PCR, sorologia, microscopia eletrônica…) para o diagnóstico de patógenos 

virais (Jacobson et al., 1981; Kolesnikovas et al., 2006; Leineweber & 

Marschang, 2023; Piskurek & Okada, 2007; Potgieter et al., 1987;). 

1.3 Família Viperidae e o Gênero Bothrops 

Os indivíduos da família Viperidae estão amplamente distribuídos em 

grande parte das áreas tropicais e temperadas do globo (Terrible et al., 2009). 

Essa família possui como característica particular as presas inoculadoras de 

peçonha retráteis e ocas (solenóglifas), sendo esse grupo responsável pela 

maior incidência de acidentes ofídicos no Brasil (Campbell & Lamar, 2004; 
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Malaque & Gutiérrez, 2016). Dentro dessa família, o gênero Bothrops 

compreende um grupo monofilético de serpentes neotropicais popularmente 

conhecidas no Brasil como jararacas. Este grupo habita desde a América 

Central (México) até o território da América do Sul (Campbell & Lamar, 2004; 

Wüster et al., 2002). Segundo Wüster et al. (2002), o ancestral comum das 

espécies do gênero Bothrops foi o primeiro viperídeo a colonizar a América do 

Sul no Mioceno (entre 10-23 milhões de anos atrás). Assim, ancestrais do 

gênero colonizaram inicialmente um território sem outros viperídeos para ocupar 

e expandir seu nicho. Além disso, segundo Cadle (1985) e Cadle & Greene 

(1993), a América do Sul era primariamente colonizada por colubrídeos e 

boídeos, e os viperídeos não contemplavam a dieta desses dois grupos, 

favorecendo a dispersão do gênero Bothrops pelo continente. 

Espécies do gênero Bothrops podem ser encontradas em diferentes 

habitats (terrestres, arborícolas e semi-arborícolas). O gênero passou a ocupar 

a maior parte das ecorregiões neotropicais, desde florestas tropicais e 

subtropicais até regiões áridas e semiáridas, e desde ilhas e regiões de baixada 

até cerca de 3.000 metros de altitude (Campbell & Lammar, 2004; Araújo & 

Martins, 2006; Carrasco et al., 2012; Martins et al., 2001; Martins et al., 2002). 

A grande preferência de habitats ocupados está ligado também às variações 

morfológicas, como tamanho do corpo e da cauda, e ecológicas, como 

preferência de presas e períodos reprodutivos (Lillywhite & Henderson, 1993; 

Martins et al., 2001). Em relação a dieta dos indivíduos que compõem esse 

grupo é de conhecimento que em algumas espécies ocorra uma variação, com 

juvenis e adultos apresentando diferentes preferências de presas. Além disso, 

o gênero é conhecido por apresentar a maioria das suas espécies com dieta 

generalista e algumas com dieta especialista (Silva et al., 2017; Martins et al., 

2002). 

No Brasil, o gênero está presente em todos os biomas ocupando uma 

ampla variedade de ecossistemas terrestres (Furtado, 2007; Martins et al., 

2001). No país ocorrem 31 espécies do gênero Bothrops (Guedes et al., 2023), 

compreendendo tatno espécies continentais quanto insulares, que se 

diferenciam de acordo com o isolamento geográfico, resultando em diferenças 

morfológicas e moleculares (Barbo et al., 2016; Grazziotin et al., 2006). De 
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acordo com as filogenias mais recentes, o gênero é composto por seis grupos 

monofiléticos de espécies – grupo de Bothrops alternatus, grupo de Bothrops 

atrox, grupo de Bothrops jararacussu, grupo de Bothrops taeniatus, grupo de 

Bothrops jararaca e grupo de Bothrops neuwiedii – além de várias espécies não 

associadas a nenhum grupo atualmente (Fenwick et al., 2009). O grupo 

Bothrops jararaca se distribui ao longo da Mata Atlântica Brasileira e em diversas 

ilhas continentais (Barbo et al. 2022.) Atualmente, o grupo é formado por duas 

espécies continentais – Bothrops jabrensis Barbo et al., 2022 e Bothrops 

jararaca – e cinco espécies com distribuições restritas a ilhas –  Bothrops 

alcatraz Marques et al., 2002, Bothrops germanoi Barbo et al., 2022, Bothrops 

insularis (Amaral, 1922), Bothrops otavioi Barbo et al., 2012 e Bothrops sazimai 

(Grazziotin et al., 2006). 

As espécies insulares são provenientes do isolamento de populações 

continentais em ilhas criadas pelas flutuações do nível do oceano durante a 

transição entre o Pleistoceno e Holoceno, resultando em especiação decorrente 

de acúmulos de diferenças genéticas, morfológicas e ecológicas ao longo do 

tempo (Banci, 2023; Marques, 2021; Marques et al., 2002a). Um fator notável 

nas diferenças entre espécies de Bothrops insulares e continentais é o tamanho 

corporal. É possível observar, por exemplo, que as espécies de Bothrops 

insulares são comumente menores do que as espécies continentais (Marques 

et al., 2002b). Boback & Guyer (2003) compararam o tamanho corporal de 

serpentes em ilhas e continentes e correlacionando diversas causas para o 

possível nanismo em espécies insulares. Fatores como a disponibilidade de 

presas e a área total da ilha foram identificados como influências diretas nas 

alterações no tamanho corporal dos animais insulares. 

A espécie B. jararaca é distribuída amplamente pela Mata Atlântica com 

hábitos predominantemente noturnos e terrestres, sendo mais ativas nos meses 

mais quentes e chuvosos (Barbo et al., 2011; Campbell & Lamar, 2004; Salomão 

et al., 1997; Sazima, 1992). A espécie apresenta variação ontogenética em sua 

dieta: os juvenis se alimentam de presas ectotérmicas (principalmente anuros e 

lagartos); enquanto os adultos se alimentam de presas endotérmicas 

(principalmente pequenos roedores) (Hartmann et al., 2003; Sazima & Haddad, 

1992; Sazmia, 1992). Os jovens de B. jararaca utilizam frequentemente os 
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córregos para forragear devido a predominância de anuros em sua dieta. Além 

disso, podem buscar abrigo em vegetações próximas, contrastando com os 

adultos da espécie que não recorrem às vegetações (Hartmann et al., 2003; 

Sazima & Haddad, 1992). Os indivíduos juvenis da espécie apresentam a ponta 

da cauda com coloração contrastante ao do restante do corpo e utilizam tal 

variação como estratégia de predação a fim de mimetizar invertebrados para 

atrair suas presas potencialmente consumidoras desses animais (Martins et al., 

2002; Sazima, 1992).  

A espécie B. sazimai é endêmica da Ilha dos Franceses, localizada no 

município de Itapemirim no estado do Espírito Santo e dados recentes indicam 

que é a espécie que sofreu o processo de insularização mais recente dentro do 

grupo de B. jararaca (Barbo et al. 2022). As únicas informações disponíveis até 

o momento sobre sua morfologia e ecologia são aquelas presentes em sua 

descrição (Barbo et al., 2016). A espécie é similar a B. jararaca, mas apresenta 

algumas diferenças morfológicas como menor tamanho corporal, olhos maiores 

e cauda relativamente mais comprida. Além disso, possui maior atividade nos 

períodos crepuscular e noturno, sendo encontradas tanto no solo quanto em 

porções baixas de árvores e arbustos. Durante o estudo de descrição de B. 

sazimai, o conteúdo estomacal de 26 indivíduos, adultos e juvenis da espécie 

foram avaliados e apenas presas ectotérmicas foram registradas. As presas mais 

frequentes (n=17) foram as lagartixas: Gymnodactylus darwinii, Hemidactylus 

mabouia (espécie invasora comum na ilha), seguido por lacraias da ordem 

Scolopendromorpha (n=6) e um indivíduo da própria espécie. O encontro de 

presas ectotérmicas no conteúdo estomacal de juvenis e adultos sugere que não 

ocorra variação ontogenética na dieta da espécie (Barbo et al., 2016). Os 

indivíduos juvenis de B. sazimai apresentam variação morfológica na coloração 

da cauda assim como ocorre em B. jararaca, no entanto, a coloração possui um 

tom mais amarelado (Barbo et al., 2016). Pelo endemismo da espécie, B. sazimai 

foi definida como espécie criticamente em perigo de extinção segundo o decreto 

Nº 5237-R, estabelecido pelo Governo do Estado do Espírito Santo em 2022. 

Apesar de as dessas espécies apresentarem uma estreita relação 

filogenética, características como a variação ontogenética relacionada à faixa 

etária dos indivíduos, o ambiente onde esses animais estão inseridos, como 
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esses animais ocupam esses ambientes e as diferenças genéticas e 

morfológicas entre as duas espécies reforçam o a possibilidade de haver uma 

diferença na composição viral, tanto entre as espécies, quanto entre indivíduos 

da mesma espécie (juvenis e adultos). Os vírus têm sido associados a declínios 

populacionais de répteis (Bower et al., 2018; Marschang et al., 2021), trazendo 

risco para a biodiversidade do grupo. Assim, o conhecimento e monitoramento 

da diversidade viral nesse grupo são importantes do ponto de vista tanto 

epidemiológico quanto da conservação. 

2. OBJETIVO 

Avaliar a diversidade viral presente em amostras de swab cloacal de duas 

espécies do gênero Bothrops, B. jararaca (continental) e B. sazimai (insular), 

testando a influência da faixa etária e do hábito alimentar na composição viral. 

 

2.1 Objetivos Específicos 

a. Caracterizar a diversidade viral, por meio da técnica de metagenômica 

viral (viroma) usando HTS, presente em amostras de swab cloacal de 

duas espécies de Bothrops, B. jararaca (continental) e B. sazimai 

(insular); 

b. Analisar comparativamente a modulação da faixa etária e do hábito 

alimentar na composição viral nestas espécies. 

 

3. HIPÓTESES 

1. A maior diversidade viral será encontrada nas amostras de B. jararaca, visto 

que está inserida em um ambiente mais complexo e com maior diversidade de 

presas; 

2. Ocorrerá uma variação na composição viral entre juvenis e adultos de B. 

jararaca, em razão da variação ontogenética dos hábitos alimentares. O mesmo 

não ocorrerá para B. sazimai; 

3. Uma maior riqueza de famílias virais será vista em indivíduos adultos, quando 

comparados aos indivíduos jovens de uma mesma espécie, devido ao maior 

tempo de exposição ao ambiente e interações entre diferentes hospedeiros 
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virais. 

4. METODOLOGIA 

4.1 Área de Estudo 

Indivíduos de B. jararaca (Figura 1A) foram amostrados dentro de 

Unidades de Conservação, como o Parque Ecológico Mico Leão Dourado 

(município de Silva Jardim), a Reserva Biológica União (municípios de 

Casimiro de Abreu e Rio das Ostras), a Reserva Biológica de Poço das Antas 

(municípios de Silva Jardim e Casimiro de Abreu) no estado do Rio de Janeiro 

(Figura 2). A região amostrada é formada por Floresta Ombrófila Densa 

Submontana e de Baixada (Carvalho et al., 2008). Indivíduos da espécie 

também foram amostrados fora das Unidades de Conservação, nos municípios 

de Armação dos Búzios e Nova Friburgo (Figura 2). O município de Armação 

dos Búzios possui vegetação caracterizada como Floresta Estacional, Mata de 

Restinga e vegetação antrópica (Dantas et al., 2009). A vegetação do 

município de Nova Friburgo é formada por Floresta Ombrófila Densa Montana 

(Cortines et al., 2011). 

Indivíduos de B. sazimai (Figura 1B) foram amostrados na Ilha dos 

Franceses, situada no município de Itapemirim, no estado do Espírito Santo 

(Figura 2). A ilha abrange uma área de 155.926 metros quadrados (m²) 

cobertos pelas seguintes formações vegetais: arbustiva (34%), formação 

florestal (35%), rupestre (12%), mata de leucenas (13%), poça de maré (<1%), 

regiões antropizadas (1%) e taquaral (5%). A vegetação antropizada é formada 

por espécies invasoras e clareiras, observadas nas áreas de trilhas para o farol 

da ilha e em áreas de visitações turísticas não fiscalizadas. Além disso, as 

formações de taquaral e de matas de leucena são formações compostas 

predominantemente por sucessão ecológica dominada por plantas exóticas, 

ressaltando uma degradação histórica na ilha (Ferreira et al., 2007). 
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Figura 1. Indivíduos das espécies B. jararaca (A) e B. sazimai (B). Ambos os indivíduos foram 

amostrados no estudo. O indivíduo A (V$51), um juvenil de B. jararaca foi coletado em Nova 

Friburgo (RJ). O indivíduo B (V$4), um adulto de B. sazimai foi coletado na Ilha dos Franceses 

(ES). 

 

Fonte – Azevedo, S.M., 2022. 

 

Figura 2. Municípios e localidades de captura das espécies de serpentes amostradas no estudo. 

 

Fonte – QGIS, 2022. 
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4.2 Amostragem 
 

Indivíduos de B. sazimai foram amostrados em busca ativa crepuscular e  

noturna na Ilha dos Franceses em três campanhas realizadas em 

setembro/2022, março/2023 e fevereiro/2024, com duração de quatro dias 

cada. Os animais capturados foram sexados, medidos e soltos. Já os 

indivíduos de B. jararaca foram coletados em oito campanhas entre 2022 e 

2023, com duração de sete dias, realizadas nas Unidades de Conservação 

previamente mencionadas. Também foram disponibilizadas algumas caixas 

para contenção de serpentes em pontos de coleta estratégicos para que 

funcionários das Unidades de Conservação e população local nos arredores 

das Unidades capturassem e armazenassem os espécimes encontradas no 

dia a dia. 

Todos os animais foram capturados utilizando gancho e pinção 

herpetológicos e manuseados com auxílio de tubos de contenção e com luvas 

esterilizadas. A sexagem foi feita com sondas inseridas na cloaca. A 

diferenciação foi feita observando se a sonda inserida pode ser introduzida. 

Isso só é possível em machos, visto que o hemipênis encontra-se invaginado 

na cloaca e é oco (Melgarejo-Giménez, 2006). O Comprimento Rostro-Cloacal 

(CRC) e o Comprimento Caudal (CC) foram tomados com auxílio de fita 

métrica. Os indivíduos de B. jararaca foram classificados em juvenis e adultos 

de acordo com a classificação de Sazima (1992): os machos juvenis 

apresentam CRC menor que 650 (milímetros) mm, enquanto os adultos 

possuem CRC maior ou igual a 650 mm; fêmeas juvenis apresentam CRC 

menor que 750 mm, enquanto as adultas possuem CRC maior ou igual a 750 

mm. Os indivíduos de B. sazimai foram classificados em juvenis e adultos de 

acordo com a classificação de Barbo et al. (2016): machos juvenis possuem 

CRC menor que 451 mm, enquanto adultos possuem CRC maior ou igual a 

451 mm; fêmeas juvenis possuem CRC menor que 551 mm, enquanto adultas 

possuem CRC maior ou igual a 551 mm. A captura dos animais, coleta de 

amostras, transporte e processamento foram aprovadas pelos comitês 

responsáveis, SISBIO n° 86838-2/CEUA-UENF n° 560. 

A coleta do material viral foi realizada por esfregaço da mucosa cloacal 
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por meio de introdução de swab estéril. Cada swab foi armazenado em um 

microtubo estéril de 1,5 (mililitros) mL contendo 400 (microlitros) µL de 

RNAlater® (Thermo Fisher, Massachusetts, Estados Unidos). Todos os tubos 

foram lacrados com Parafilm® (Merck, Darmstadt, Alemanha), identificados 

com etiquetas (contendo a numeração correspondente ao animal amostrado e 

a data de coleta) e encaminhados ao Laboratório de Diversidade e Doenças 

Virais (LDDV) na Universidade Federal do Rio de Janeiro (UFRJ), onde foram 

armazenados em freezer a -80 graus Celsius (˚C) até o processamento. 

4.3 Protocolo Viroma (HTS) 

4.3.1 Preparação das Amostras e Enriquecimento Viral 

 

Para a realização do HTS, a amostra foi completamente descongelada e 

homogeneizada via vórtex. As amostras foram reunidas em pools na primeira 

etapa do protocolo de viroma visando um maior custo-benefício da testagem. 

Esses pools foram compostos por amostras de cinco indivíduos, levando-se 

em consideração a similaridade de CRC e espécie (Tabela 1). Na primeira 

etapa faz-se a separação do conteúdo viral dos demais elementos presentes 

na amostra, para isso utilizou-se o método de filtragem com o auxílio de um 

filtro Millipore (Millex-HV – 0,45 micrômetro (µm); Merck). Para isso, foram 

unificadas 200 µL de cada amostra que constitui um pool e, em seguida, o 

material foi filtrado dentro de um microtubo de 1,5 mL estéril, devidamente 

identificado por pool. O último ponto desta etapa consistiu na confecção de um 

mix de enzimas responsáveis pela digestão de quaisquer ácidos nucleicos 

livres na amostra. O mix consiste na adição de 42 µL de RNase-Free DNase 

(Promega, Madison, Estados Unidos), 63 µL de Baseline Zero DNase 

(Epicentre, San Diego, Estados Unidos), 21 µL de RNase I (Ambion, 

Naugatuck, Estados Unidos), um tip de Benzonase Nuclease (Sigma, San Luis, 

Estados Unidos) e 294 µL de 10x Baseline-Zero Buffer. Quando pronto, o mix 

foi centrifugado e pipetado no tubo contendo a amostra. O mix foi 

homogeneizado e centrifugado para que em seguida o tubo fosse levado para 

o termobloco a 37 ºC por 1 hora (h) 30 minutos (min). Passado o tempo de 

incubação, o tubo foi retirado e centrifugado. Em seguida, foram pipetados 2 

µL do reagente de inativação (10x Baseline-Zero Stop Solution; fornecido com 

o kit da Baseline Zero DNase) no tubo contendo as amostras. Essa etapa é 
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fundamental para que as enzimas de digestão de ácidos nucleicos livres sejam 

inativadas. O material obtido foi incubado no termobloco a 65 ºC por 10 min e 

em seguida centrifugado. Por fim, o sobrenadante foi retirado (~200 µL) e 

realocado em um novo tubo estéril de 1,5 mL. 

Tabela 1. Composição dos pools das amostras de B. jararaca e B. sazimai, com o código de 

cada pool, identificação das amostras individuais bem como sexo, Comprimento Rostro-

Cloacal (CRC) (mm), Comprimento Caudal (CC) (mm) e os locais de coleta de B. jararaca, 

apresentados em siglas (Nova Friburgo (NF), Silva Jardim (SJ), Rio das Ostras (RO), Casimiro 

de Abreu (CA) e Armação de Búzios (B)). 

 

B. jararaca  B. sazimai 

Pool Amostra Sexo CRC CC Local Pool Amostra Sexo CRC CC 

Bjar 1 V$51 Fêmea 236 NA NF Bsaz 1 V$35 NA 397 78 

V$77 Macho 270 45 SJ V$3 Macho 400 100 

V$23 Fêmea 382 50 RO V$5 Macho 510 110 

V$65 Macho 395 70 SJ V$91 Fêmea 537 86 

Bjar 2 V$37 Fêmea 432 70 NF Bsaz 2 V$96 Macho 541 101 

V$44 Fêmea 434 62 NF V$33 Fêmea 545 90 

V$71 Fêmea 458 68 SJ V$31 Fêmea 547 95 

V$41 Macho 459 80 NF V$84 Macho 557 100 

Bjar 3 V$28 Fêmea 475 66 CA Bsaz 3 V$92 Fêmea 572 92 

V$9 Fêmea 489 72 RO V$87 Fêmea 580 86 

V$66 Macho 546 92 SJ V$86 Fêmea 592 88 

V$46 Fêmea 549 78 AB V$93 Macho 592 113 

Bjar 4 V$80 Fêmea 596 92 SJ Bsaz 4 V$94 Macho 599 104 

V$76 Fêmea 644 131 RO V$32 Macho 600 110 

V$75 Macho 692 144 RO V$88 Fêmea 603 89 

V$78 Fêmea 710 104 SJ V$83 Fêmea 604 100 

Bjar 5 V$62 Fêmea 746 108 SJ Bsaz 5 V$29 Fêmea 610 90 
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Amostra Sexo CC CRC Local  Amostra Sexo CRC CC 

V$50 Fêmea 806 115 CA 
 

V$95 Fêmea 611 96 

V$79 Fêmea 955 132 SJ V$4 Fêmea 620 100 

V$72 Fêmea 1100 141 SJ V$1 Fêmea 650 80 

*NA = não aplicável. 
 

 
4.3.2 Extração dos Ácidos Nucleicos 

Para obtenção dos ácidos nucleicos virais, foi utilizado o QIAamp 

MinElute Virus Spin Kit (QIAGEN, Hilden, Alemanha). Nesta etapa, algumas 

modificações do protocolo do kit foram realizadas a fim de melhorar o 

aproveitamento para a técnica de metagenômica, como: não utilizou-se o 

Carrier RNA no Buffer AL; ressuspendeu-se a protease com o Buffer AVE, não 

utilizando assim o Protease Resuspension Buffer; para a etapa da lavagem, 

não utilizou-se o AW1; e o material foi eluído em 20 µL de água ultra-pura. 

Resumidamente, foram adicionados 25 µL de protease ao tubo do material 

obtido na etapa anterior, a fim de degradar o componente proteico dos 

capsídeos e envelopes virais. Após isso, adicionaram-se 200 µL do Buffer AL 

para degradar quaisquer lipídios presentes nos envelopes virais e o material 

homogeneizado via vórtex, incubado e centrifugado rapidamente. Adicionou-se 

250 µL de etanol absoluto para precipitar o material genético, seguido de vórtex, 

incubação e centrifugação. Em seguida, todo o líquido foi transferido para a 

coluna de purificação fornecida pelo kit e centrifugado. A lavagem da coluna de 

purificação foi feita com a adição de 500 µL de Buffer AW2. Em seguida, após 

outra etapa de centrifugação, foi adicionado álcool absoluto à coluna para 

garantir uma melhor purificação dos ácidos nucleicos. Centrifugou-se 

novamente e a coluna de purificação foi transferida para um tubo de 1,5 mL 

estéril, onde foi adicionado água ultra-pura no centro da membrana da coluna 

de purificação, a fim de desprender os ácidos nucléicos e recuperação em tubo 

apropriado. Após uma última etapa de incubação e centrifugação, o tubo foi 

colocado no gelo e seguiu diretamente para a próxima etapa. 

 

4.3.3 Síntese da Dupla Fita de DNAc 

 
A primeira etapa para a conversão das moléculas virais de RNA em DNA, 
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consiste no anelamento dos iniciadores randômicos (Random Hexamers), 

capaz de fornecer uma pequena sequência de nucleotídeos para iniciar a 

síntese da nova molécula. Primeiramente, foi preparado um mix utilizando 

Random Hexamers (50 nanogramas por microlitro - ng/µL) e dNTP mix (10 

milimolar - mM) - bases nitrogenadas que serão usadas durante a síntese. O 

próximo passo foi adicionar o mix ao tubo contendo as amostras e em seguida 

levado ao termociclador (5 min a 65º C). Após o tempo necessário, retirou-se 

a amostra e manteve-se em gelo. 

 

A segunda etapa é a síntese da primeira fita de DNAc, na qual 

primeiramente foi confeccionado um outro mix contendo 5x SSIV Buffer (84 

µL), 100 mM DTT (21 µL), Ribonuclease Inhibitor (21 µL) e SuperScript IV RT 

(21 µL). Quando pronto, o mix foi adicionado ao tubo de reação, que após 

homogeneizado passou por uma ciclagem de: 10 min a 23ºC; 10 min a 50 ºC; 

10 min a 80 ºC. Após esse tempo, o tubo foi colocado no gelo até a próxima 

etapa. 

A última etapa da síntese inicia com a preparação de um mix contendo: 

Klenow Buffer 10x (58 µL), DNTPs (25 mM) (10,5 µL ) e Klenow Enzyme (26 

µL). O mix foi acrescentado ao tubo de reação que após homogeneizado foi 

levado ao termociclador por: 1 h a 37 ºC; 20 min a 75 ºC. Após todas as etapas, 

o tubo foi armazenado em freezer -20 ºC até a próxima etapa. 

 

4.3.4 Purificação dos Ácidos Nucleicos 

 
Antes da confecção das bibliotecas é necessário purificar os ácidos 

nucleicos virais (DNA/DNAc) utilizando o Agencourt AMPure XP Kit (Beckman 

Coulter Genomics; Danvers, Estados Unidos). A amostra (47 µL) foi pipetada 

em tubos de 1,5 mL e 85 µL de beads (esferas magnéticas com afinidade ao 

DNA) foram adicionados a fim de aderir ao material genético viral. A amostra 

foi incubada por 15 min para que em seguida os tubos fossem alocados em 

uma estante magnética por ~3-5 min. Após, removeu-se o sobrenadante para 

lavar as beads duas vezes com álcool 80% (200 µL). Em seguida, descartou-

se o etanol e esperou-se a completa secagem do pellet de beads durante ~5-

10 min. Adicionou-se Resuspension Buffer (RSB) do Tagmentation Kit 

(Illumina, San Diego, Estados Unidos) para ressuspender o pellet contendo o 
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DNA purificado e removeu-se o tubo da estante magnética. Foi necessário 

ressuspender as beads com o auxílio de uma pipeta e incubar por 2 min. Por 

fim, os tubos foram incubados por ~5-10 min na estante magnética e foram 

transferidos ~15 µL da amostra para um tubo estéril de 0,6 mL. 

 

4.3.5 Quantificação dos Pools 

 
A quantificação dos pools foi realizada através do QuBit dsDNA HS Assay 

Kit (LifeTech, Carlsbad, Estados Unidos). Primeiramente preparou-se uma 

solução com os seguintes reagentes: Qubit® dsDNA HS Buffer (4,48 ml) e 

Qubit® dsDNA HS Reagent (22,5 µL). Em seguida, adicionou-se a solução a 

um Qubit™ Assay Tube identificado para o Standard 1 e em seguida 

adicionou-se o reagente Standard 1 fornecido pelo kit a este tubo. Repetiu-se 

o processo para o Standard 2. Os tubos foram homogeneizados via vórtex e 

em seguida a solução foi adicionada nos Qubit™ Assay Tube identificados 

para cada pool (foram necessários 2 por pool – Q3 e Q5). Adicionou-se 3 µL 

(Q3) ou 5 µL (Q5) de pool nos tubos correspondentes que foram 

homegeneizados via vórtex. Os tubos foram incubados por 2 min e em seguida 

foram quantificados pelo aparelho Qubit 2.0 Fluorometer, tendo suas 

concentrações anotadas em ng/µL.  

 
4.3.6 Biblioteca de DNA 

 
Para a construção das bibliotecas que foram sequenciadas, foi utilizado 

o Nextera XT DNA Library Preparation Kit (Illumina). Para isso, adicionou-se 5 

µL de Tagment DNA buffer a microtubo de 0,2 mL para cada pool, a fim de 

fragmentar o DNA, 2,5 µL do pool de ácido nucléico viral purificado, e 2,5 µL 

de Amplicon Tagmentation Mix, contendo o tampão de fragmentação de DNA. 

Em seguida, os tubos foram centrifugados e colocados em um termociclador. 

Ao final desta etapa, adicionou-se o Neutralization buffer para parar a 

fragmentação. Após a incubação por 5 min, adicionaram-se 2,5 µL de Index 1 

(i5) e 2,5 µL de Index 2 (i7) e 7,5 µL de Nextera PCR Mix contendo todos os 

componentes necessários para a amplificação das bibliotecas. Em seguida, os 

tubos foram colocados novamente no termociclador seguindo com a ciclagem: 

3 min a 72ºC; 30 segundos (seg) a 95 ºC; (18x) 10 seg a 95 ºC, 30 seg a 55 ºC 
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e 30 seg a 72 ºC; e 5 min a 72 ºC. Por fim, os tubos seguiram para centrifugação 

a 300 forças gravitacionais (g) por 1 min a 20 ºC. 

 

4.3.7 Purificação da Biblioteca de DNA 

Nesta etapa, a biblioteca foi transferida para um tubo estéril de 1,5 mL. 

Adicionaram-se 5 µL de beads ao tubo para reter os fragmentos de DNA muito 

grandes e inadequados para o sequenciamento (>800 pares de base - pb). O 

material foi incubado por 15min e transferido para uma estante magnética por 

~3-5 min. Transferiu-se o sobrenadante para um novo tubo e em seguida 

retiraram-se os tubos da estante magnética. Adicionaram-se 15 µL de beads 

ao segundo tubo, onde iria reter os fragmentos de DNA no tamanho ideal para 

o sequenciamento (entre 200 e 800 pb), e incubou-se por 5 min para realocar 

na estante magnética por ~3-5 min. O próximo passo consistiu em descartar o 

sobrenadante e realizar a lavagem das beads da seguinte forma: lavar as 

beads duas vezes com 110 µL álcool 80% e descartar o etanol; incubar para 

secagem total e remover os tubos da estante magnética. Por fim, foram 

adicionados 25 µL de RSB (Illumina) para ressuspender o material desejado e 

em seguida incubou-se os tubos por 15 min, transportou-se os tubos 

novamente para a estante magnética e incubou-se por 2 min. Foram 

transferidos ~23 µL da biblioteca purificada para um tubo estéril de 0,6 mL.  

 

4.3.8 Avaliação e Mix das Bibliotecas de DNA 

 
A quantificação foi realizada com o QuBit dsDNA HS Assay Kit (LifeTech) 

no Qubit 2.0 Fluorometer, como descrito anteriormente. A estimativa de 

tamanho das bibliotecas foi realizada via PCR com o NEBNext® kit (NEB, 

Ipswich, Estados Unidos). Primeiramente, foi confeccionada uma solução 

tampão com NEBNExt Dilution Buffer 10x (4,88 ml) e Qubit® dsDNA HS 

Reagent (24,5 µL). Após vortexar e centrifugar, a biblioteca foi diluída na 

porção 1:50 em um tubo estéril de 0,6 mL utilizando o NEBNext Dilution Buffer 

1x. O tubo foi homogeneizado via vórtex e centrifugado para em seguida 

adicionar o NEBNext Master Mix + Primer em um tubo de 0,2 mL a fim de 

auxiliar na amplificação das bibliotecas. Adicionou-se a biblioteca diluída no 

tubo anterior. O mesmo processo foi realizado para o controle positivo (ST1) e 
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o negativo (próprio tampão 1x). Após isso, os tubos foram para a ciclagem. Por 

fim, os tubos foram centrifugados e o material amplificado foi submetido a 

separação em gel de agarose 1%, onde foram avaliados os tamanhos pelo 

rastro visível e comparada ao marcador molecular e ao controle positivo. Com 

base nesses dados, foi mensurada a molaridade do mix de bibliotecas através 

da avaliação da concentração final do mix, com o Qubit, e da estimativa de 

tamanho médio do mix, com o PCR NEBNext. As bibliotecas foram misturadas 

e o mix de bibliotecas foi diluído a 2 nanomolar (nM). A Illumina recomenda 

que a o mix seja diluído a 4 nM. No entanto, a molaridade obtida nesse preparo 

foi muito baixa, não sendo possível ser diluída a 4 nM, e sim a 2 nM. 

 

4.3.9 Corrida MiSeq V3 
 

O sequenciamento propriamente dito foi realizado na Plataforma Illumina 

MiSeq, do Departamento de Genética da UFRJ, usando o MiSeq v3 Reagent 

kit (Illumina). Primeiramente, ocorreu a desnaturação da dupla fita de DNA do 

mix de bibliotecas adicionando 5 µL deste em um tubo estéril de 1,5 mL e 5 µL 

de hidróxido de sódio (NaOH) a 0,2 molar (M) (diluído na hora). Após vortexar, 

centrifugar e incubar o tubo, adicionaram-se 990 µL de Hybridization Buffer 

(HT1), para estabilizar as moléculas de DNA fita simples e auxiliar na etapa 

inicial do sequenciamento. Para obter a molaridade final de sequenciamento 

(10 picomolar - pM), foi adicionado 300 µL do mix de bibliotecas desnaturado 

em um tubo estéril de 1,5 mL e 450 µL de HT1, seguido de homogeneização 

leve e centrifugação rápida. O cartucho de sequenciamento foi carregado com 

600 µL do mix de bibliotecas à 10 pM. 

 

4.3.10 Análise e Interpretação de Dados 

 
Após o sequenciamento, as reads maiores que 50 pb e Qscore maior que 

30 foram selecionadas usando a ferramenta FastQC 0.11.3 (Andrews, 2010). 

Em seguida, o fastp v.0.20.1 (Kearse et al., 2012) filtra os dados de acordo 

com os comandos sugeridos pelo pesquisador. Uma nova etapa de avaliação 

de qualidade foi realizada para confirmação da remoção das reads indesejadas 

e os dados globais de controle de qualidade foram reunidos em um único 

arquivo com o auxílio da ferramenta Multiqc v1.14 (Ewels et al., 2016). Após 

os filtros de qualidade e tamanho, as sequências passaram pelo filtro para o 
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genoma do hospedeiro, que exclui as sequências originadas do próprio 

hospedeiro. Isso garante que as reads classificadas posteriormente não 

tenham como origem o genoma do hospedeiro. Para o filtro foi utilizado o 

genoma de B. jararaca (GCA_018340635.1) para ambas as espécies, já que 

B. sazimai é próxima filogeneticamente de B. jararaca. O mesmo genoma foi 

utilizado para ambas as espécies pois o genoma completo de B. sazimai ainda 

não está descrito. A etapa seguinte contempla a classificação taxonômica das 

reads filtradas através da ferramenta Kraken2 v.2.1.2 (Wood et al., 2019). O 

Kraken2 v.2.1.2 constrói uma matriz de assinaturas taxonômicas a partir do 

banco de dados público e identifica pelo padrão apresentado qual a referência 

mais provável. Com os dados obtidos os vírus foram taxonomicamente 

classificados a nível de família. A mesma análises de classificação taxonômica 

também foi realizadas com os contigs, formados pelo programa SPAdes 

v3.15.3 (Rice et al., 2000). Os contigs são formados através da união das reads 

em regiões de sobreposição de sequência. Os resultados obtidos foram 

plotados em um gráfico interativo pelo programa Krona v.2.7.1 (Ondov et al., 

2011).  

Após observar que na biblioteca Bsaz 4 não foi possível classificar 

nenhuma sequência viral, a mesma não pôde ser incluída nas análises 

seguintes. Com os dados obtidos foi possível construir uma curva de rarefação 

usando o ambiente RStudio (Allaire, 2012), visando avaliar se a diversidade 

amostrada foi satisfatoriamente sequenciada. A normalidade dos dados foi 

verificada através do teste de Shapiro-Wilk. A fim de verificar se houve 

diferença significativa na riqueza viral entre as espécies, foi aplicado o teste U 

de Mann-Whitney (Mann & Whitney, 1947). A correlação de Spearman 

(Spearman, 1904) foi utilizada para avaliar a relação entre as variáveis 

“tamanho de indivíduos” e “riqueza viral”. Para avaliar a similaridade entre os 

pools foi aplicado o Índice de Jaccard (Jaccard, 1901). O método de 

agrupamento utilizado para a montagem do cluster foi o UPGMA (Unweighted 

Pair Group Method with Arithmetic Mean).  

Para avaliar como a comunidade viral se comporta entre os diferentes 

pools, foi construída uma estrutura de metacomunidade (Leibold & Mikkelson, 

2002), a qual considera a distribuição das espécies ao longo de um gradiente 
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ambiental (Figura 3). Para a análise, foi utilizada a Média Recíproca (Gauch & 

Whittaker, 1972), que ordena uma matriz de espécies, agrupando aquelas com 

distribuições espaciais mais semelhantes.  

O primeiro elemento a ser avaliado é a “coerência”, que avalia se as 

espécies de uma matriz estão associadas ao mesmo gradiente ambiental. Para 

a avaliação do primeiro elemento é necessário calcular o número de ausências 

embutidas na matriz ordenada pela média recíproca e verificar sua 

significância através do teste de Monte Carlo.  

A estrutura da metacomunidade pode ser classificada como “tabuleiro de 

damas” (Diamond, 1975) quando o número de ausências embutidas na matriz 

ordenada por média recíproca for maior do que a média das matrizes 

aleatorizadas, ou seja, mais ausências embutidas do que o esperado. Se não 

houver diferença significativa a estrutura é “aleatória” (Leibold & Mikkelson, 

2002). Caso o número de ausências embutidas seja inferior ao esperado, isso 

significa que as espécies respondem a um mesmo gradiente ambiental e o 

próximo elemento deve ser analisado.  

O segundo elemento da análise é a “substituição de espécies (turnover)”, 

em que é calculado o número de substituições de espécies entre locais ao 

longo do gradiente. Caso o número de substituições seja significativamente 

inferior à média das matrizes aleatorizadas (negativo), deve ser analisado o 

próximo elemento: coincidência de limites (Patterson & Atmar, 1986). O mesmo 

ocorre se o número de substituições for significativamente maior do que a 

média das matrizes (positivo). Em um cenário em que o número de 

substituições seja positivo ou negativo, mas sem significância, o modelo se 

encaminha para uma “quasi-estrutura”, seguido de avaliação de coincidência 

de limites (Presley et al., 2010). No caso de turnover positivo e não significativo, 

podemos ter uma quasi-estrutura clementsiana, gleasoniana ou igualmente 

espaçada. Com um turnover negativo e não significativo, podemos ter uma 

quasi-estrutura aninhada hiperdispersada, aninhada aleatória ou aninhada 

agrupada.  

Um turnover significativo, devemos observar o Índice de Morisita (IM) 

obtido. No primeiro caso (turnover positivo e significativo), se IM>1, a estrutura 
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é Clementsiana (Clements, 1916). Caso o IM<1, a estrutura é “igualmente 

espaçada” (Tilman, 1981). Caso o IM não seja significativo, é uma estrutura 

Gleosiana (Gleason, 1926). No segundo caso (turnover negativo e 

significativo), se IM>1, a estrutura é “aninhada agrupada”. Caso o IM<1, a 

estrutura é aninhada hiperdispersada. Caso o IM não seja significativo, a 

estrutura é “aninhada aleatória”.  

No caso do viroma, nos modelos “aninhados” a composição das famílias 

de comunidades menores é parte de comunidades maiores. No modelo 

“igualmente espaçado”, a distribuição de famílias é mais espaçada do que o 

esperado, isso é resultado de interações entre as espécies, principalmente a 

competição. No modelo “gleasoniano”, as espécies se distribuem de uma 

forma aleatória. Essa distribuição é moldada pelos fatores ambientais e 

interações entre as espécies, refletindo na coexistência de espécies. No 

modelo “clementsiano”, a substituição das espécies é de forma agrupada, 

variando conforme condições ambientais. As espécies podem se associar de 

forma similar ou evoluir de forma semelhante. 

Figura 3. Fluxograma retirado de Braga et al., 2017. Os Elementos da Estrutura de 

Metacomunidades estão representados pelos losangos. As setas se referem aos valores 

obtidos em cada um dos Elementos (positivo, negativo, não significativo - NS e os valores do 

Índice de Morisita). As esferas mostram o tipo de estrtura formada a partir das etapas 

anteriores.  

 

Fonte – Braga et al., 2017. 
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5. RESULTADOS  

5.1 Visão Geral do Sequenciamento 
 

No HTS, foram obtidas 37.192.404 reads brutas (mín. 100; máx. 

10.365.422). Ao todo, 28.055.274  reads (mín. 2; máx. 8.910.908) passaram 

pelos filtros de qualidade e tamanho. Destas, 16.550.669 reads passaram pelo 

filtro do hospedeiro (mín. 9; máx. 5.327.728). A partir da ferramenta Kraken2, 

foi possível obter a classificação taxonômica de 9.579.640 reads (mín. 7; máx: 

2.644.615) – esses valores compreendem todas as classificações, e não 

apenas os vírus (Tabela 2; ANEXO A). Ao final da classificação, obtivemos 

um total de sequências que não puderam ser classificadas pela ferramenta – 

No hits (ANEXO A). Além disso, foram obtidos 437 contigs virais (ANEXO B). 
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Tabela 2. Relação de leituras, classificações e riqueza de famílias virais de cada uma das bibliotecas sequenciadas. 

 

 

 

 

 

 

  

 

B. jararaca B. sazimai 

Bibliotecas Bjar 1 Bjar 2 Bjar 3 Bjar 4 Bjar 5 Bsaz 1 Bsaz 2 Bsaz 3 Bsaz 4 Bsaz 5 

Leituras 
brutas 

2.931.684 2.469.262 6.453.958 3.556.442 2.492.380 10.365.422 4.409.570 1.880.574 100 2.633.012 

Reads pós-
filtros 

1.841.064 1.522.812 5.512.382 2.583.452 2.011.114 8.910.908 3.636.992 799.356 2 1.005.446 

Reads 
classificadas 
Kraken2 

748.490 645.055 1.619.847 1.302.657 693.572 2.644.615 941.548 434.515 7 567.334 

Contigs virais 47 53 44 50 51 47 54 49 0 42 

Riqueza de 
famílias virais 
Kraken2 

8 8 7 4 6 13 7 7 0 6 
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Através dos dados da ferramenta Kraken2 foi possível calcular a média 

das reads pertencentes à cada domíno. As sequências virais correspondem a 

0,48% das sequências classificadas. De maneira geral, a maioria das 

sequências classificadas pertence ao domínio Bacteria, representando 53,2% 

das sequências analisadas. Além destes domínios, foi possível classificar 

sequências do domínio Eukaryota e Archaea (Tabela 3). Essas classificações 

podem ser observadas no plot do Krona (Figura 4 e Figura 5). 

 

Figura 4. Gráfico interativo do Krona com as porcentagens de cada domínio que foram 

classificados em um dos pools avaliados no presente trabalho (Bjar 1). 
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Figura 5. Gráfico interativo do Krona com as porcentagens de reads virais que foram classificadas 

em um dos pools avaliados no presente trabalho (Bjar 1). 

 

 

 

Fonte – Krona, 2025 

 

Tabela 3. Valores de média (x̅), desvio padrão (d.p), mínimo e máximo de reads de cada um 

dos grupos classificados pela ferramenta Kraken2. 

Kraken2 

 Vírus Bactérias Eucariotos Arquéias 

x̅  (%) 0,48 53,2 8,3 0,02 

d.p (%) 0,57 10,40 10,33 0,01 

Mín (%) 0 38 0 0 

Máx (%) 2 78 36 0,03 

 

5.2 Curva de rarefação  

A curva de rarefação foi montada a partir das reads virais obtidas pelo 

sequenciamento. A partir da curva, foi possível observar que todas as 

bibliotecas atingiram a faixa exponencial, mesmo que Bjar 1, Bsaz 1 e Bsaz 3 
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não tenham atingido um platô completo, indicando que o número de reads 

amostrado foi suficiente para representar a riqueza viral em cada uma das 

bibliotecas sequenciadas (Figura 6). 

Figura 6. Curva de rarefação de cada biblioteca amostrada. 

 

 

Duas famílias virais foram predominantes nos pools das duas espécies 

de Bothrops, mas foram retiradas por serem possivelmente decorrentes de 

contaminações. A maior quantidade de reads virais classificada foi atribuída à 

família Coronaviridae, totalizando 41.516 (mín - 1.396; máx - 9.491) reads. No 

entanto, ao fazer uma segunda análise através do BLAST (Basic Local 

Alignment Search Tool), as sequências identificadas corresponderam com alta 

similaridade (μ = 99,58%) ao SARS-CoV-2 (Severe Acute Respiratory 

Syndrome Coronavirus 2). A plataforma MiSeq da UFRJ, onde foi realizado o 

sequenciamento das amostras do presente estudo, é usada para sequenciar 

o genoma de SARS-CoV-2 de forma corriqueira, contribuindo assim com a 

hipótese de que houve contaminação laboratorial pelo vírus mencionado. Por 

isso, devido a incerteza da origem dos dados da família Coronaviridae, esta 

não foi incluída nos resultados. O mesmo ocorreu para a família Retroviridae, 

na qual foram obtidas 6.008 (mín - 168; máx - 1.696) reads a partir do 

sequenciamento. A família foi removida das análises de dados após uma 

análise no BLAST que verificou que diversas sequências analisadas 

correspondem com alta similaridade (μ = 98,3%), ao HIV (Human 

Immunodeficiency Virus). A grande quantidade de reads identificadas por 

biblioteca sugere também contaminação ambiental ou laboratorial por 
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retrovírus. A contaminação por retrovírus pode ocorrer na execução do 

protocolo de viroma, já que alguns componentes dos reagentes utilizados 

durante o processo podem conter retrovírus em sua composição, ou ainda por 

contaminação laboratorial, pois o laboratório onde foram sequenciadas as 

amostras também sequencia amostras contendo HIV. 

5.3 Riqueza e famílias virais  

Após a retirada das famílias Coronaviridae e Retroviridae dos resultados, 

foram identificadas no total 18 famílias virais. A maior riqueza viral foi 

encontrada na biblioteca Bsaz 1, nos menores indivíduos de B. sazimai, 

enquanto que a menor riqueza foi encontrada na biblioteca Bjar 4, indivíduos 

adultos de B. jararaca (Tabela 5). Ao analisar a riqueza de famílias virais por 

espécie, foi observado que o maior número de famílias virais foi encontrado, 

nas duas espécies, em indivíduos juvenis. A riqueza de famílias virais em B. 

sazimai (15 famílias; mín. 4; máx. 11) foi maior do que a encontrada em B. 

jararaca (12 famílias; mín. 2; máx. 6). Embora B. sazimai apresente maior 

riqueza de famílias virais, não houve diferença significativa na riqueza viral 

média entre os pools de B. sazimai e B. jararaca (U (5,4) = 8,5, p = 0,80). A 

família Microviridae está presente em todas as bibliotecas sequenciadas. As 

famílias Schitoviridae, Herpesviridae e Demerecviridae foram identificadas 

exclusivamente em B. jararaca, enquanto que as famílias Cajensviridae, 

Zierdtviridae, Iridoviridae, Alloherpesviridae e Inoviridae foram identificadas 

exclusivamente em B. sazimai. As famílias Herpesviridae, Genomoviridae, 

Poxviridae, Iridoviridae e Alloherpesviridae se destacam como grupos que 

infectam vertebrados. Ainda, houve a presença de famílias virais que infectam 

invertebrados, algas, plantas, arqueas e, com destaque para a ampla presença 

de bacteriófagos (Mesyanzhinovviridae, Schitoviridae, Autographiviridae, 

Microviridae, Demerecviridae, Kyanoviridae, Herelleviridae, Straboviridae, 

Peduoviridae, Casjensviridae e Inoviridae) nas bibliotecas sequenciadas 

(ANEXO A).  

5.4 Padrões Ecológicos 

Em relação à variação ontogenética na riqueza viral nas serpentes 

analisadas, foi registrada uma forte correlação negativa e significativa (rs = - 
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0,90; p < 0,05) entre a riqueza viral e o tamanho médio dos indivíduos por pool, 

considerando os dados das duas espécies em conjunto (Figura 6), ou seja, a 

riqueza viral diminui a medida que o tamanho dos indivíduos aumenta. Ao 

avaliar os dados das espécies separadamente, a correlação também foi 

negativa e significativa em B. jararaca (rs  =  -0,87; p = 0,05) e em B. sazimai 

(rs = -0,95; p = 0,5) (Figura 7) 

Figura 7. Relação entre o tamanho médio dos indivíduos por pools e a riqueza viral. A) 

Representa a correlação de ambas as espécies. B) Representa a correlação entre os 

indivíduos de B. jararaca. C) Representa a correlação entre os indivíduos de B. sazimai. 

 

 

 

A semelhança nas composições virais dos pools de B. jararaca e 

B.sazimai, foi comparada a partir do Índice de Jaccard. Não foi observado 

nenhum padrão de agrupamento de acordo com as variáveis de interesse do 

presente estudo, seja ele por tamanho dos indivíduos, dieta ou espécie. Foi 

possível observar que “Bsaz 2”, contendo indivíduos pequenos, apresentou a 
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maior dissimilaridade quando comparado aos outros pools. O restante dos 

pools formaram grupos compostos por ambas as espécies e por tamanhos de 

indivíduos variados (Figura 8). 

Figura 8. Cluster de dissimilaridade de Jaccard 

 

 

 

                   Para compreender como as famílias virais estão distribuídas entre os 

pools, foi analisada a estrutura de metacomunidade das duas espécies. A partir 

da análise de estrutura de metacomunidade, a configuração da 

metacomunidade se assemelha ao modelo quasi-clementsiano (Figura 9). A 

coerência foi positiva, bem como a substituição de espécies, que não foi 

significativa. O Índice de Morisita foi superior a 1 com significância (Tabela 4). 

Nesse tipo de estrutura, grupos são formados ao longo do gradiente de uma 

forma que a substituição de espécies ocorra de maneira menos acentuada do 

que uma estrutura Clementsiana. Observa-se que o agrupamento não segue 

um padrão específico: os pools de indivíduos juvenis não estão organizados 

juntos, assim como os pools de adultos. Além disso, não há um padrão de 

agrupamento entre as espécies, visto que cada pool não se agrupa 

obrigatoriamente com pools da mesma espécie. 
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Tabela 4. Valores de coerência, substituição de espécies (turnover) e coincidência de limites. 

 

 

 

 

 

 

 

 

 

 

 

Figura 9. Estrutura de metacomunidade observada para as espécies de B. jararaca e B. 

sazimai. 

 

 

6. DISCUSSÃO 

O presente estudo é o primeiro a avaliar o viroma em serpentes do 

gênero Bothrops, e o segundo a avaliar a diversidade viral em serpentes por 

meio de HTS. O primeiro sendo o de Liu et al., (2023), que avaliou o viroma 

oral e cloacal das serpentes Protobothrops mucrosquamatus (família 

Coerência  

Ausências embutidas 31 

Média das simulações 76,46 

p < 0,05  

Turnover  

Substituições 347 

Média das simulações 291,99 

p > 0,05  

Coincidência de limites  

Índice de Morisita 1,43 

p < 0,05  

45



 
 

  

Viperidae), Elaphe dione (família Colubridae) e Gloydius angusticeps (família 

Viperidae). Avaliamos 10 pools compostos por 40 indivíduos com diferentes 

tamanhos, pertencentes às espécies B. jararaca e B. sazimai. Os resultados 

indicam que a espécie não influencia na composição viral da forma como 

prevíamos. 

Embora tenhamos um número considerável de indivíduos por pools (4 

indivíduos), o número de reads e contigs virais no presente trabalho, foram 

relativamente baixos. Apenas as famílias Coronaviridae e Retroviridae 

apresentaram um número de contigs considerável, embora a presença dessas 

duas famílias seja proveniente, possivelmente de contaminação cruzada. Ao 

observar as demais famílias, obtivemos o maior número de reads (90) para a 

família Mesyanzhinovviridae no pool Bjar 1 e o maior número de contigs (2) 

pertenceu a mesma família. Um baixo número de reads e contigs virais obtidos, 

reflete provavelmente, no método de amostragem e condição de saúde dos 

indivíduos amostrados. Animais amostrados através de swab que não 

apresentam sinais clínicos de doenças, tendem a identificar uma menor 

proporção de reads e contigs virais (Jakobsen et al., 2020; Smol’ak et al., 2022; 

Truchado et al., 2020; Waller et al., 2022; Zhang et al., 2017) do que animais 

amostrados, por exemplo, através das fezes (Billaud et al., 2021; Chong et al., 

2019; Klukowski et al., 2024; Lu et al., 2022; Ng et al., 2014; Ramírez-Martínez 

et al., 2018).  

A presença de bacteriófagos em todas as bibliotecas 

(Mesyanzhinovviridae, Schitoviridae, Autographiviridae, Demerecviridae, 

Kyanoviridae, Herelleviridae, Straboviridae, Peduoviridae, Casjensviridae, 

Zierdtviridae, Inoviridae) no sequenciamento reflete o método da amostragem. 

Não é possível inferir a ocorrência de bacteriófagos em espécies de serpentes, 

visto que não há literatura que relate sua presença. O trato gastrointestinal é 

um local propício para o crescimento e desenvolvimento de bactérias (Anders 

et al., 2021; de Jonge et al., 2022; De Sordi et al., 2019), o que torna comum 

a presença de fagos infectantes desses organismos. Logo, os bacteriófagos 

são os vírus mais abundantes nos eucariotos (Łusiak-Szelachowska et al., 

2017). Esse tipo de vírus possui uma importância significativa no trato 

gastrointestinal dos animais, muitas vezes combatendo enterites bacterianas 
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nos organismos (Gindin et al., 2018; Gutiérrez & Domingo-Calap, 2020). Um 

estudo conduzido por Lu et al. (2022), descreveu o viroma gastrointestinal de 

duas espécies de lagartos: Phrynocephalus erythrurus e Phrynocephalus 

theobaldi. O sequenciamento revelou a presença majoritária de bacteriófagos, 

assim como o presente estudo. Além de serem parte da flora gastrointestinal, 

os bacteriófagos ainda podem ser utilizados para o tratamento de bactérias 

resistentes a antibióticos (Gaborieau & Debarbieux, 2023; Golkar et al., 2014). 

A fagoterapia já foi aplicada no tratamento de infecções em répteis (Carini et 

al., 2017; Greene et al., 2021), apresentando resultados positivos no 

tratamento. 

Embora os bacteriófagos prevaleçam no viroma gastrointestinal das duas 

espécies, algumas famílias que abrangem vírus que infectam vertebrados 

também foram reportadas. A família Herpesviridae, presente na biblioteca Bjar 

1, destaca-se como um grupo relevante de patógenos em vertebrados. Em 

répteis, os testudines são mais afetados por esses vírus (Greenblatt et al., 

2005; Leineweber et al., 2021; Oriá et al., 2021; Origgi et al., 2015; Weldon et 

al., 2023), refletindo em manifestações clínicas como doenças oftalmológicas, 

oncogênese e pneumonia. No entanto, os herpesvírus já foram relatados em 

outros grupos, como serpentes, lagartos e crocodilos (Govett et al., 2005; 

Hauser et al., 1983; Hughes-Hanks et al., 2010; Simpson et al., 1979). Em 

serpentes, a infecção manifestou-se como anemia, hepatite e pancreatite, 

ocasionando a morte dos indivíduos (Hauser et al., 1983). Já no estudo 

conduzido por Lovstad et al. (2019), as serpentes desenvolveram carcinoma, 

seguido de morte ou necessidade de eutanásia. No presente estudo, não 

houve nenhum sinal clínico indicativo de doença nos animais amostrados. 

No presente estudo, a família Poxviridae foi identificada nas bibliotecas 

Bjar 3 e Bsaz 1. Os poxvírus são causadores de importantes doenças humanas 

e animais (MacLachlan & Dubovi, 2016). Seus hospedeiros incluem insetos, 

mamíferos, aves, répteis e peixes (McInnes et al., 2023). Em répteis, a infecção 

pode causar lesões cutâneas (Sarker et al., 2019; Seitz et al., 2021), danos 

múltiplos nos órgãos (pancreatite, vasculite, endocardite) (Sarker et al., 2021), 

hemorragia, estomatite e doença vesicular (Liu et al., 2011). Especificamente 

em serpentes, há apenas um estudo que aborda a infecção por poxvírus. 
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Piskurek & Okada (2007), conduziram um experimento demonstrando que as 

serpentes podem ser potenciais hospedeiras do vírus Teterapox, vírus similar 

à varíola (Parker et al., 2018).  

 A família Iridoviridae, presente nas bibliotecas Bsaz 1 e Bsaz 5, é 

conhecida por sua capacidade de infectar tanto vertebrados (peixes, anfíbios 

e répteis) quanto invertebrados (insetos e crustáceos) (Chinchar et al., 2017). 

Poucos estudos elucidam sobre a infecção por iridovírus em serpentes (Hyatt 

et al., 2002; Johnsrude et al., 1997; Wellehan Jr. et al., 2008). O estudo de 

Hyatt et al. (2002), detectou a presença de Ranavirus – gênero da família 

Iridoviridae − em Morelia viridis, em que os indivíduos infectados 

apresentavam anorexia e prolapso retal. Já a pesquisa conduzida por 

Wellehan Jr. et al. (2008) também detectou Ranavirus, desta vez em 

Tamnophis saurita sackenii, que manifestava anorexia e necrose hepática. 

Assim como o presente estudo, Johnsrude et al. (1997) amostraram um 

viperídeo, pertencente ao gênero Bothrops. Neste caso, uma infecção por 

iridovírus em Bothrops moojeni foi investigada, identificando um carcinoma 

renal como manifestação clínica. Os resultados destacam a importância de 

estudos mais aprofundados acerca da infecção por esse tipo de vírus em 

serpentes, incluindo as do gênero Bothrops, a fim de compreender melhor a 

patogenicidade, transmissão e impactos nas populações de jararacas. 

A família Genomoviridae, identificada nas bibliotecas Bjar 1, Bsaz 2 e 

Bsaz 3, não possui registros de infecção em répteis. Os registros para 

vertebrados incluem animais de produção (König et al., 2021; Shi et al,, 2021b), 

morcegos (Cibulski et al., 2021; Kemenesi et al., 2018), insetos (Liu et al., 

2016), aves (Schmidlin et al., 2019), humanos (Zucherato et al., 2023), entre 

outros. A patogenicidade dos genomovírus ainda é desconhecida para 

hospedeiros vertebrados e precisa ser melhor explorada.  

Por último, a família Alloherpesviridae possui como hospedeiros os 

anfíbios e peixes (Waltzek et al., 2009). Não há evidências na literatura da 

presença desses vírus em répteis. É necessário ampliar o estudo acerca desse 

vírus em B. sazimai, uma vez que as presas da espécie se restringem apenas 

aos lagartos, invertebrados e indivíduos da própria espécie, tornando assim 

menos provável a contaminação indireta desses animais pela dieta.  
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Os padrões de variação na riqueza e composição de espécies de vírus 

nas amostras analisadas não corroboraram às predições feitas no presente 

trabalho. Esperávamos, por exemplo, que fosse encontrada maior diversidade 

viral em B. jararaca quando comparada a B. sazimai, uma vez que B. sazimai 

está restrita a uma pequena porção de terra, de ambientes mais homogêneos, 

com menor diversidade de presas e não apresenta variação ontogenética na 

dieta (Barbo et al., 2016), enquanto que B. jararaca ocupa uma área geográfica 

mais abrangente, com maior diversidade ambiental e de presas, além de 

possuir variação ontogenética na dieta (Fraile et al., 2017; Parrat et al., 2016; 

Sazima, 1992). No entanto, B. sazimai apresentou maior número de famílias 

virais nos pools amostrados e não foi observada diferença na riqueza média 

de famílias virais entre pools das duas espécies. Além disso, apesar de 

existirem famílias virais que foram exclusivamente registradas em B. jararaca 

(Schitoviridae, Herpesviridae e Demerecviridae) e B. sazimai (Inoviridae, 

Alloherpesviridae, Iridoviridae, Zierdtviridae e Casjensviridae), os resultados 

das análises de Jaccard indicaram que os pools de diferentes tamanhos e 

diferentes espécies são semelhantes entre si, com exceção de Bsaz 2. 

Uma possível explicação para as composições serem semelhantes é a 

proximidade filogenética entre elas. Os padrões filogenéticos encontrados em 

diversos estudos indicam que espécies de Bothrops insulares do Brasil são 

decorrentes de especiação recente proveniente de flutuações do nível do mar, 

e dados recentes indicam que B. sazimai foi a espécie que se separou mais 

recentemente das populações de Bothrops continentais, há cerca de 420.000 

anos atrás (Barbo et al. 2022). Isso sugere que B. sazimai tenha se especiado 

recentemente, diferindo em alguns fatores de B. jararaca (Grazziotin et al., 

2006). Logo, as duas espécies avaliadas são muito próximas 

filogeneticamente, embora fatores evolutivos - como efeito fundador (Sendell-

Price et al., 2021) e deriva genética (Wiens et al., 2022) – e ecológicos como 

a grande diferença no ambiente e disponibilidade das presas tenham levado à 

mudanças ecológicas e morfológicas aceleradas em B. sazimai, o curto tempo 

de especiação pode ter sido um fator importante para não havar diferença na 

composição de famílias virais entre as espécies. 

Um fator que pode ter influenciado especificamente na maior riqueza 
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viral registrada em B. sazimai é a grande densidade populacional dessa 

espécie (Barbo et al. 2016) quando comparado à densidade populacional da 

espécie continental. Animais insulares que não possuem um predador e 

competidores, tendem a possuir uma grande densidade populacional (Case, 

1975; Hasegawa, 2003; Taverne et al., 2019). A riqueza e densidade de 

parasitas, frequentemente estão associados positivamente à maior densidade 

de hospedeiros (Maganga et al., 2014; Mbanzulu et al., 2020). A grande 

densidade populacional somada à uma maior agregação populacional e à 

baixa diversidade de hospedeiros na ilha, facilitam a propagação de infecções 

(Papaïx et al., 2015; Susi & Laine, 2020). Esses fatores podem explicar 

também a menor riqueza viral encontrada em B. jararaca. Por habitarem 

ambientes geograficamente extensos, os indivíduos de B. jararaca estão mais 

dispersos nas áreas, reduzindo o contato frequente entre esses indivíduos e 

reduzindo a probabilidade de infecção entre eles. Além disso, a grande 

diversidade de espécies no ambiente em que B. jararaca ocupa, pode 

ocasionar o efeito diluidor: o aumento da biodiversidade em um determinado 

local, reduz a prevalência e transmissão de patógenos entre hospedeiros (Lee 

& Mohd, 2020; Johnson & Thieltges, 2010; Johnson et al., 2013). 

Outras hipóteses de variação da comunidade viral nas Bothrops estão 

ligadas à ontogenia das serpentes. Mais precisamente, esperávamos um 

acúmulo de famílias virais ao longo do desenvolvimento dos indivíduos. Além 

disso, esperávamos que as mudanças ontogenéticas na dieta de B. jararaca 

(Sazima, 1992), refletissem em mudanças na composição viral ao longo do 

desenvolvimento. No entanto, registramos um padrão de riqueza de famílias 

virais contrário ao previsto com uma correlação negativa entre tamanho das 

serpentes e a riqueza viral para as duas espécies. As bibliotecas que 

concentraram a maior riqueza de famílias virais foram a Bjar 1 (n = 6), Bjar 2 

(n = 6) e Bsaz 1 (n = 11). Isso possivelmente deve-se ao fato de os animais 

juvenis, no geral, não possuem o sistema imune completo, diferentemente dos 

adultos, ficando suscetíveis à diferentes infecções (Burns-Naas et al., 2008; 

Pilorz et al., 2005; Winzeler et al., 2014). Em répteis, o sistema imune parece 

responder da mesma forma. Stromsland & Zimmerman (2017) avaliaram o 

sistema imune de Trachemys scripta, espécie de testudine, e confirmaram que 

a relação de números de parasitas em répteis diminui conforme o avanço da 
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idade. Isso deve-se ao pleno desenvolvimento e à resposta eficaz dos 

anticorpos naturais em indivíduos adultos. Outro estudo com testudines refletiu 

no mesmo resultado, indivíduos adultos de Chrysemys picta apresentaram 

quantidade superior de anticorpos naturais à indivíduos juvenis (Judson et al., 

2020). Em serpentes o mesmo foi observado por Ujvari & Madsen (2011), 

sugerindo que a produção aumentada de anticorpos naturais em pítons adultas 

possui impacto positivo na resposta imune às infecções. O aumento de 

anticorpos naturais tende a desempenhar um papel fundamental, auxiliando as 

serpentes a responderem de forma mais eficaz a patógenos, especialmente à 

medida que envelhecem. 

Uma segunda possibilidade é a de que indivíduos mais jovens de 

Bothrops tendam a se alimentar com uma frequência relativamente maior do 

que os adultos, resultando em acúmulo de famílias virais no conteúdo intestinal 

adquirido da dieta. A presença de famílias virais associada à dieta dos indívuos 

vem sendo estudada em diversos grupos de animais (Fontenele et al., 2019; 

Geoghegan et al., 2022; Salmier et al., 2017; Souza et al., 2019). Uma maior 

frequência de alimentação de jovens foi registrada, por exemplo, para Bothrops 

itapetiningae através de análises de conteúdo estomacal (Leão et al., 2014). 

Os autores discutiram que a alta taxa metabólica associada ao 

desenvolvimento e a inabilidade de capturar presas grandes poderiam forçar 

indivíduos jovens a se alimentar mais frequentemente. 

Além disso, nem a espécie de serpente nem o tamanho dos indivíduos 

pareceu ser importante para a estruturação da composição das comunidades 

virais a nível de família de acordo com a análise de Jaccard e à análise de 

elementos de estrutura de metacomunidades empregadas. No entanto, a 

análise de metacomunidades apresentou uma coerência positiva, indicando 

que as famílias virais avaliadas estão respondendo a um mesmo gradiente 

ambiental. Isso indica que outros fatores não avaliados podem ser importantes 

para a estruturação das comunidades virais. 

7. CONCLUSÃO  

O presente estudo, apresentou o viroma gastrointestinal de B. jararaca e B. 

sazimai, sendo pioneiro nesta área para ambas as espécies. Observou-se que 
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o viroma das duas espécies é predominantemente composto por 

bacteriófagos, além da presença de algumas famílias virais patogênicas em 

vertebrados. Embora a riqueza média de vírus por pool não tenha diferido entre 

as duas espécies de Bothrops, a riqueza total de famílias virais foi maior em B. 

sazimai, mesmo a espécie se alimentando de uma diversidade menor de 

presas e estando presente uma área geográfica menor e menos complexa. 

Além disso, não foi possível identificar uma relação entre a faixa etária dos 

indivíduos/dieta com a diversidade viral observada. Embora tenhamos 

registrados variação na riqueza de famílias virais de acordo com a espécie e o 

desenvolvimento ontogenético, não registramos padrões claros de variação na 

composição de espécies (análises de similaridade e de elementos de estrutura 

de metacomunidade) de acordo com essas variáveis.  

Torna-se essencial ampliar os estudos virais acerca destas espécies e 

de outros répteis através de métodos de amostragem diversificados, como a 

utilização de tecidos e fezes, aumento do número amostral e avaliação do 

viroma de outras espécies de serpentes, a fim de identificar os agentes virais 

associados a esses indivíduos, principalmente com foco na preservação das 

espécies no entendimento das relações entre vírus e hospedeiro.  
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ANEXOS 

ANEXO A. Número de reads classificadas e não classificadas (No hits) pelo Kraken2, em cada 

uma das bibliotecas. 

 

 

 

 

 

 

 

 

 

 

 

79



 
 

  

ANEXO B. Número de contigs classificados em cada família por biblioteca, acompanhadas de seus hospedeiros. 

Família viral Hospedeiro 

Bjar 1 Bjar 2 Bjar 3 Bjar 4 Bjar 5  Bsaz 1 Bsaz 2 Bsaz 3  Bsaz 5 

Contigs Contigs Contigs Contigs Contigs Contigs Contigs Contigs Contigs 

Coronaviridae Vertebrate 41 45 40 46 44 42 48 42 36 

Retroviridae Vertebrate 4 7 3 4 5 5 6 6 6 

Mesyanzhinovviridae Bacteria 2 0 0 0 0 0 0 0 0 

Schitoviridae 
Bacteria, 
Archaea 

0 0 0 0 0 0 0 0 0 

Autographiviridae 
Bacteria, 
Archaea 

0 1 0 0 1 0 0 0 0 

Herpesviridae Vertebrate 0 0 0 0 0 0 0 0 0 

Microviridae Bacteria 0 0 1 0 0 0 0 1 0 

Genomoviridae 
Vertebrate, 

Fungi 
0 0 0 0 0 0 0 0 0 

Demerecviridae 
Bacteria, 
Archaea 

0 0 0 0 0 0 0 0 0 

Kyanoviridae Bacteria 0 0 0 0 0 0 0 0 0 

Herelleviridae 
Bacteria, 
Archaea 

0 0 0 0 0 0 0 0 0 

Straboviridae Bacteria 0 0 0 0 0 0 0 0 0 

Peduoviridae Bacteria 0 0 0 0 0 0 0 0 0 
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Família viral Hospedeiro 

Bjar 1 Bjar 2 Bjar 3 Bjar 4 Bjar 5  Bsaz 1 Bsaz 2 Bsaz 3  Bsaz 5 

Contigs Contigs Contigs Contigs Contigs Contigs Contigs Contigs Contigs 

Poxviridae 
Human, 

vertebrates, 
arthropods 

0 0 0 0 0 0 0 0 0 

Baculoviridae Invertebrate 0 0 0 0 1 0 0 0 0 

Casjensviridae Bacteria 0 0 0 0 0 0 0 0 0 

Zierdtviridae 

Bacteria, 
Archaea, 

Plant 
Plastid 

0 0 0 0 0 0 0 0 0 

Iridoviridae Vertebrate, 
Invertebrate 

0 0 0 0 0 0 0 0 0 

Alloherpesviridae Amphibians, 
Fishs 

0 0 0 0 0 0 0 0 0 

Inoviridae Bacteria 0 0 0 0 0 0 0 0 0 
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